An important property in commutative algebra is finite generation of ideals.

For a polynomial ring in finitely many variables over a field $k[x_1, ..., x_n]$, The fact (which we will show) that every ideal is finitely generated is equivalent to the fact that every variety in A^{h} is the intersection of finitely many hypersurfaces (i.e. the zero locus of a single polynomial).

Def: A ring R is <u>Noetherian</u> if every ideal of R is finitely generated.

Equivalently, R is Noetherian if its ideals satisfy the ascending chain condition:

Claim: R is Noetherian iff every strictly increasing chain of ideals terminates.

Pf: If I is not finitely generated, choose
$$f_1 \in I$$
, $f_2 \in I \setminus (f_1)$,
 $f_n \in I \setminus (f_1, ..., f_{n-1})$. Then we get on infihite chain of ideals
 $(f_1) \notin (f_1, f_2) \notin ...$

Conversely, if $I_1 \not\in I_2 \not\in \dots$ is a chain of ideals and $I = \bigcup I_i$ is finitely generated, then all of the generators are in one of the I_j , so $I = I_j$. \Box

Ex: Some familiar Noethmian rings: all fields, Z, Z[x]

Thm: (Hilbert Basis Theorem) If Riss a Noetherian ring, then R[x] is Noetherian.

(Note that this implies R[x1,..., xn) is also Noethnian by induction.)

Pf: First, some terminology: If $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n \in \mathbb{R}^n$, $w/a_n \neq 0$, then a_n is the <u>initial coefficient</u>, $a_n x^n$ is the <u>initial term</u>.

let $I \subseteq R[x]$ be an ideal. Choose a sequence $f_1, f_2, \dots \in J$ as follows: let $f_1 \in J$ be a nonzero elt of least degree,

and let f_{n+1} be an element of least degree in $I \setminus (f_{1}, ..., f_{n})$ If $(f_{1}, ..., f_{n}) = I$, we're done.

Let a_j be the initial coefficient of f_j . Set $J^{=}(a_{1,a_2,...}) \subseteq \mathbb{R}$. Since \mathbb{R} Noetherian take m to be the smallest integer s.t. $J^{=}(a_{1,...,a_m})$.

Claim:
$$I = (f_1, \dots, f_m).$$

Otherwise consider
$$f_{m+1}$$
. Then $a_{m+1} = \sum_{j=1}^{m} u_j a_j$ for some $u_j \in \mathbb{R}$

Since deg
$$f_{m+1} \ge deg f_j$$
 for $j \le m$, we can define
 $g = \sum_{j=1}^{m} u_j f_j x^{deg f_{m+1} - deg f_j} \in (f_1, ..., f_m).$
 $f_{m+1} - g \in \mathbb{I} \setminus (f_1, ..., f_m)$ and has degree strictly less than
the degree of f_{m+1} , which is a contradiction. D
(or: If R is Noetherian, and S a finitely generated
 $R - algebra, then S is Noetherian.$
Pf: $S = R[a_1, ..., a_n], so R[x_1, ..., x_n], which is Noetherian$

surjects onto S. Thus, any I in S 16 generated by the images of generators of its preimage. D

Northerian Modules

An R-module Mis <u>Noetherians</u> if every submodule is finitely generated. (Equivalently, if it has the ascending chain condition on submodules or if every collection of submodules has a maximal element — see HW.) Prop: If R 18 a Northerian ring and M a finitely generated R-module, then M is Northerian.

Pf: Let $f_{1,...,}f_{n}$ be the generators of M and NSM a submodule.

If
$$n = 1$$
, consider the map $R \twoheadrightarrow M$ sending $I \mapsto f_1$.
Then the preimage of N is on ideal, so the images
of its generators generate N.

If
$$n > 1$$
, by induction, M/Rf_1 is Noetherian.
So if \overline{N} is the image of N in the quotient,
 \overline{N} is f.g. by the images of g_1, \dots, g_s .

NARF, is a submodule of Rf, so it's f.g. by h,,...,hr.

Thus, if a eN, a is a lin comb. of the gi., so a is gen by the gi and hj. []